Moscow Exchange
FIX-protocol for Request for Stream service

User guide

Moscow Exchange
Version 1.0.1
June 8t 2020

Contents

(@Y oY = SRRSO SRRT 5
(Do TN {01 o1 A o0 o0 PR UPRPPROTPN 5
ST A A T0T= 3 L=]] £] o OSSPSR 6
910 o1 1= 0T A] (o] SO 7

Dot aT 0] 1= o o] o &S SSURSSSRRTRI 7
Y a0 =T 0 B TTSESF: o T= I aT=T o LT PSSP 7
P AITIES ...ttt ettt sttt ettt h ek bR e R R oAt e £ e b e Ee R e Re e Rt e R £ o8 £ oA £ e R e ke AR e AR e AR £ e R £ e R e oA £ oA £ e ReEeAEe AR e AR £ eR £ oA £ e A e oAb e R e Re AR e AR e AR e e R e e R e oA £ oAb e AR e be AR e AR e e R e e R e e e e b e benEeebeeEe e R e e R e e e e e e 8
Y L0 U0 W TeTStST: o T=IN (= V=T USSP 9

FIX SESSION-TEVE] MESSAYESeveeieeeeitieiteete et e ste et st este et e s st e s teesseeseesbeestesseesseessesseeateessease e seesseas s e seeseeess e e e esseeReeaseeseeeRe e s e e ess e R e enteesseaRe e eeeneeas e e teeneeaneeeeeneeaneenteennenres 9
(0o o o N (A OSSR 9
(0o 01U A () 1SRRI 10
[ToT T oLT: Y A (0 SO SSSRSP 11
LIS T [U L A) OSSP TP PPPTTRP 11
=] Lol e o DTS) TSSO PR PSP PRPPRPPO 12
Lo UL To e == A 7) PSP PPV PRURURUPPPRPIN 13
R E] =0t) TSSO P PP PR PR PP 14

FIX session establishment and termination

0010 - 0 SRRSO 15
s e L] 5] T o0 =T o1 £ T o SRR 15
=TT e T Lo T g T] TP PR PRSP 16
LTSRSy o] v LE SN T o PSSR 16
R = T O L=T LTl 410 0 o= TP PP PSPPI 17
(O [0 I Q=T €L Lo U=) IESTeEST] L] PSPPSR 17

ReeStabliSh SESSION QTR TAIIUIEo 17

Messages common for both role: Maker and

LI] OSSPSR 19
LT oL Y I TS A T[0T A) ST S 19
LT oL]V 11 A () SO SPRSRR 19

Messages from Client to Server. Role: Maker

.. 20
O B (=0 0oL A Y o) RO 20
@10 0] (=] e [U1=R £y [T A (2) SRS 20
(01K o] (=l (ST TSP P TP U TV PR URURURRPRPRON 21
L@ 0] (=0T ot I (4 ISR 22

Messages from Server to Client. Role: Maker

.. 23
L@ T 0] (I (=0 0TS o (S ISP 23
L@ 0] (I R (=T o0 ST (AN USSR 24
T UL [0 T R =T oo T A (4= SRS R RSP 25
L@ T 0] (=N (1) TSSOSO 26
(@100 (SIS e LU T o Lo A (A 1 TSSOSO 27

Messages from Client to Server. Role: Taker

.. 28
(0N o] C=l =T o DTS A (S ISP PP U T UV URURUPPPRPRRN 28
(0N o] (=l (T o0 L (N TSSOSO TP PP U TV PR URURURPPRPIN 29

MeSSAgES TrOM SEIVEN 10 CHENT. ROIEITAKET ...t b bbbt e e h e s e e b e b e b e s bt e b4 h e bt e h e e R e st e b oAb e e bt b e e bt e b e e Rt e Rt et e b e b e et e e bt et e e b e e neene e e s 30
(01K o] (= (ST ST P ST U TP URURURRPRPIN 30
(0N o]t e o (0TS e [T ol A (N 1) SO P TR U U PRURURURRPRPN 31
(0N o] (=l (T oo g (N USSP PRV PRURURURRPRPRIN 31

oo o =] oo] A) TSSOSO PR PR PRPRPPRPRO 32

QuoteStatusReport (Al

Overview
Document purpose

The document below describes the FIX protocol provided by the Moscow Exchange for connection to Request for Stream of FX
Market. The description based on the standard FIX protocol (Financial Information Exchange, http://www.fixtrading.org, version
4.4) specification. It assumed that users have basic knowledge about FIX standard. The specification does not contain neither
technical nor administrative details on network connection or security protection methods.

RFS FIX Server supports only messages, component blocks and fields that described in this document.

Note that all fields which required or conditionally required by FIX 4.4 standard but absent in MOEX Interface specification are
optional and will be ignored by MOEX. All field values, which are valid according to FIX 4.4 standard but are not described in this
document, will be considered as invalid and messages with such values will be rejected.

Each message or component block is represented as table, where each row is a message field or component block. The
following characteristics described for each field:

e Tag — unique field identifier.
e Name - field name.
e Required — shows whether the field is required or not in appropriate message or component block.

o ‘Y'—tag is required (mandatory);
‘N’ — tag is not required (optional);
'C' — tag is conditionally required.
'Y*' — tag is required by MOEX, but not required by the standard FIX 4.4 protocol;
‘N*’" — tag is not required by MOEX but required by the standard FIX 4.4 protocol;

o 'C* —tag is conditionally required by MOEX, but not required by the standard FIX 4.4 protocol.
e Type —field type.
e Valid values — list of valid tag values;
e Comments — comments, additional information for the tag.

o O O O

Service description

Base service functionality:

e User authorization \ authentication in Trading System
e Initiation of RFS auctions

e Receiving and sending of quotes

¢ Trade confirmation

Schematically the work of the service is shown in the diagram below.

B E

‘ FIX Server RFS Gateway Trading system

Document history
Issue Date Description

1.0.1 08.06.2020 Field Anonymity(6101) added to the message QuoteRequest.

FIX component blocks

Standard message header

A standard header precedes each administrative or application message. The header identifies the message type, length, destination,
sequence number, origination point and time.

N.B. Our service does not support incoming messages with 43(PossDupFlag)=Y or 97(PossResend)=Y tags.

8 BeginString N | String (7) 'FIX.4.4' Identifies beginning of new message and protocol
version. Always unencrypted, must be first field in
message.

9 BodyLength N | Length Message length, in bytes, forward to the CheckSum
field. Always unencrypted, must be second field in
message.

35 MsgType N | String (10) Defines message type. Always unencrypted, must be
third field in message.

49 SenderCompID N | String (12) Assigned value used to identify firm sending message.
Always unencrypted.

If this message sent to MOEX, then it should contain
USERID assigned to a trader by MOEX.

If this message sent from MOEX, then it will contain the
MOEX server identifier. This parameter is given by
MOEX

56 TargetCompID

String

Assigned value used to identify receiving firm. Always
unencrypted.

If this message sent from MOEX, then it will contain
USERID assigned to a trader by MOEX.

If this message sent to MOEX, then it should contain the
MOEX server identifier. This parameter is given by
MOEX

34 MsgSegNum

SegNum

Message sequence number.

52 SendingTime

UTCTimestamp

Time of message transmission (expressed in UTC). Field
format is YYYYMMDD-HH:MM:SS.sss.

122 OrigSendingTime

UTCTimestamp

Original time of message transmission when
transmitting messages as the result of resend request
(expressed in UTC). Field format is YYYYMMDD-
HH:MM:SS.sss. Required for message resend as a result
of a resend request.

Parties

The <Parties> component block is used to define parties of order or trade. For each party the following fields should be defined: PartyID,

PartylDSource, PartyRole.

e PartyID (448) = <client code>, PartyIDSource (447) = ‘D’, PartyRole (452) = ‘3° — specifies client;

453 | NoPartylD

Y*

NumInGroup

Number of repeating PartylD group entries.

448 | => PartylD

String (12)

Party identifier/code. Required if PartylDSource is specified.
Required if NoPartyIDs > 0.

User, firm, client can be defined as party of order/trader.
Note: this field must contain MOEX CLIENTCODE value

that is assigned by broker to a client. For own broker’s
accounts this value is ignored and not returned in execution
reports.

447 | => PartylDSource C char ‘D’ (Proprietary/Custom code) Identifies class or source of the PartylD (448) value. Required
if PartylD (448) is specified.

Note: applicable values depend upon PartyRole (452)

specified.
Only constant value ‘D’ is used.
452 | => PartyRole C int '1' (Executing Firm); Identifies the type or role of the PartylD (448) specified.
'3' (Client ID); '1"is used for firm;
'12' (Executing Trader); ‘3" is used for client in New Order — Single (D) message;
'17' (Contra Firm). '12" is used for user (trader, broker).

‘17’ is used for counterparty.

Standard message trailer

A standard trailer terminates each message, administrative or application. The trailer is used to segregate messages and contains
the three-digit character representation of the Checksum value.

10 CheckSum N

always last field in message.

String(3) Three byte, simple checksum. Always unencrypted,

FIX session-level messages

The session level messages are used to establish, close (terminate), support FIX session, manage session status and opportunity to
reestablish it after failure.

Logon (A)

The logon message is used to initiate FIX session and to confirm the establishing of it. The logon message must be the first message
sent by the application requesting to initiate a FIX session. The Logon reply normally can take up to 3 seconds to receive. Please allow 3

seconds waiting time for reply

Note. SenderComplD cannot be used for more than single connection to any MOEX service.

<Standard Message Y
Header>

98 EncryptMethod Y
108 HeartBtInt Y
141 ResetSeqNumFlag N
554 Password Y
1409 SessionStatus N
6936 LanguagelD N

<Standard Message Trailer> | Y

Logout (5)

int

int

Boolean

String(8)

Char

Char

'0' (None)

"Y' (Yes)
'N' (No)

'0’ (Session active)

‘5" (Wrong password or user ID)

‘7' (Logons are not allowed \ UserID
already in use)

‘R’ (Russian)

‘E’ (English)

The logout message initiates or confirms the termination of a FIX session.

MsgType = 'A'

Method of encryption. Always unencrypted.

Note: Encryption is not supported by MOEX.
Heartbeat interval (seconds). Values must fit in limits
between 1 and 60.

If HeartBtInt field value is out of range, then Logout
(35=5) message is sent with text description of error.
Indicates if the both sides of the FIX session should
reset sequence numbers. Default value is ‘Y’

User password. The maximum length is 8 characters.
Required field at MOEX

Status of the request to change the password. Required
if the server generates the message.

Language of Trading System messages.

<Standard Message Y MsgType = '5'
Header>

=2

58 | Text String Logout reason.

<Standard Message Trailer> Y

Heartbeat (0)
The Heartbeat monitors the status of the communication link and identifies when the last of a string of messages was not received.

Heartbeats issued as the result of Test Request must contain the TestReqID transmitted in the Test Request message. This is useful
to verify that the Heartbeat is the result of the Test Request and not as the result of a regular timeout.

<Standard Message Y MsgType = '0'
Header>
112 TestReqlID N | String Identifier included in Test Request (1) message to be

returned in resulting Heartbeat (0).

<Standard Message Trailer> Y

Test Request (1)

The test request message forces a heartbeat from the opposing application. The test request message checks sequence numbers
or verifies communication line status. The opposite application responds to the Test Request with a Heartbeat containing the TestReqID.

The TestReqID verifies that the opposite application is generating the heartbeat as the result of Test Request and not a normal
timeout. The opposite application includes the TestReqID in the resulting Heartbeat. Any string can be used as the TestReqID (one
suggestion is to use a timestamp string).

<Standard Message Y MsgType = '1'
Header>
112 | TestReqID Y | String Identifier included in Test Request (1) message to be

returned in resulting Heartbeat (0).

<Standard Message Trailer> Y

Resend Request (2)

Receiving application sends the resend request to initiate the retransmission of messages. This function is utilized if a sequence
number gap is detected, if the receiving application lost a message, or as a function of the initialization process. The resend request can
be used to request a single message, a range of messages or all messages subsequent to a particular message.

N.B. Our service support Resend Request message but there is no resending for Quote and Quote Request messages.
N.B. Our service does not support incoming messages with 43(PossDupFlag)=Y vnnu 97(PossResend)=Y tags.

<Standard Message Y MsgType = '2'

Header>

7 BeginSeqNo Y | SegNum Message sequence number of first message in range to
be resent.

16

EndSegNo

SegNum

Message sequence number of last message in range to
be resent. If request is for a single message
BeginSeqNo (7) = EndSeqgNo (16). If request is for all
messages subsequent to a particular message,
EndSegNo (16) = '0' (representing infinity).

<Standard Message Trailer>

Sequence Reset (4)

The Sequence Reset message has two modes: Gap Fill mode and Reset mode.

Gap Fill mode is used in response to a Resend Request when one or more messages must be skipped over for the following reasons:

e During normal resend processing, the sending application may choose not to send a message (e.g. an aged order).
e During normal resend processing, a number of administrative messages are skipped and not resent (such as Heart Beats,

Test Requests).

Gap Fill mode is indicated by GapFillFlag (tag 123) field = "Y". If the GapFillFlag field is present (and equal to "Y"), the MsgSeqNum
should conform to standard message sequencing rules (i.e. the MsgSeqNum of the Sequence Reset GapFill mode message should
represent the beginning MsgSeqNum in the GapFill range because the remote side is expecting that next message sequence number).

<Standard Message MsgType = '4'

Header>

123 | GapFillFlag Boolean Y' (Gap Fill message, MsgSeqNum field Indicates that the Sequence Reset (4) message is
valid) replacing administrative or application messages which
'N' (Sequence Reset, ignore will not be resent.
MsgSegNum)

36 | NewSegNo SegNum New sequence number.

<Standard Message Trailer>

Reject (3)

The reject message should be issued when a message is received but cannot be properly processed due to a session-level rule
violation. An example of when a reject may be appropriate would be the receipt of a message with invalid basic data (e.g. MsgType=&)
which successfully passes CheckSum and BodyLength checks. Generation and receipt of a Reject message indicates a serious error that
may be the result of faulty logic in either the sending or receiving application.

<Standard Message
Header>

45 | RefSegNum
371 | RefTagID
372 | RefMsgType

373 | SessionRejectReason

SeqNum
int
String(10)

int

'0' (Invalid tag number)

'1' (Required tag missing)

'2' (Tag not defined for this message
type)

'3' (Undefined tag)

'4" (Tag specified without a value)

'5' (Value is incorrect (out of range) for
this tag)

'6' (Incorrect data format for value)
'7' (Decryption problem)

'8' (Signature problem)

'9" (CompID problem)

'10' (SendingTime accuracy problem)
'11' (Invalid MsgType)

'12' (XML validation error)

'13' (Tag appears more than once)
'14' (Tag specified out of required order)
'15' (Repeating group fields out of
order)

'16' (Incorrect NumInGroup count for
repeating group)

MsgType = '3'

MsgSegNum (34) of rejected message.
The tag number of the FIX field being referenced.

The MsgType (35) of the FIX message being
referenced.
Code to identify reason for reject.

'17' (Non "data" value includes field
delimiter)
'99' (Other)

58 | Text N | String Message to explain reason for rejection.

<Standard Message Trailer> Y

FIX session establishment and termination scenario

Establish connection

The FIX client (initiator) sends a Logon message with SenderCompID and Password for Trading System in order to establish connection
with server (acceptor). The acceptor will authenticate the identity of the initiator by examining the Logon message. The Logon message will
contain the data necessary to support the previously agreed upon authentication method. If the initiator is successfully authenticated, the
acceptor responds with a Logon message. If authentication fails, the session acceptor shuts down the connection and sending message to
indicate the reason of failure. The session initiator may begin to send messages immediately following the Logon message, however, the
acceptor may not be ready to receive them. The initiator must wait for the confirming Logon message from the acceptor before declaring the
session fully established.

After the initiator has been authenticated, the acceptor will respond with a confirming Logon message. The initiator side will use the
Logon message being returned from the acceptor as confirmation that a FIX session has been established. The confirming Logon message from
MOEX normally can take up to 3 seconds to receive. Please allow 3 seconds waiting time for reply.

After authentication, the initiator and acceptor must synchronize their messages through interrogation of the MsgSegNum field before
sending any queued or new messages. A comparison of the MsgSegNum in the Logon message to the internally monitored next expected
sequence number will indicate any message gaps. Likewise, the initiator can detect gaps by comparing the acknowledgment Logon message’s
MsgSegNum to the next expected value. The section on message recovery later in this document deals with message gap handling.

Comments: FIX client should send Logon message with MsgSegNum (34) = 1 each new day. FIX client should send Logon message with
MsgSegNum (34) = sequence number of the last message in out log + 1 establishing the next session on the same day.

If FIX client sends to server a Logon (A) message with ResetSegNumFiag="Y", then it will not receive Execution Reports (8) for events
which took place before the session is established.

Resend messages mechanism
During initialization, or in the middle of a FIX session, message gaps may occur which are detected via the tracking of incoming
sequence numbers. The following section provides details on how to recover messages.

As previously stated, each FIX participant (FIX client or FIX server) must maintain two sequence numbers for each FIX session, each for
incoming and outgoing messages. Each message is assigned a unique sequence number, which is incremented after the message. Likewise,
every received message has a unique sequence number and the incoming sequence counter is incremented after each message.

If the incoming sequence number is greater than expected, it indicates that messages were missed and retransmission of the messages
is requested via the Resend Request (2) message.

Each side of connection expects to receive message with sequence number, which is equal to sequence number of the last message in his out
log + 1. In this case, the side, which detects gaps, should send Resend Request (2) message with a range of missed messages.

The resend request can be used to request a single message, a range of messages or all messages subsequent to a particular message.
e To request a single message: BeginSeqNo = EndSeqNo;

e To request a range of messages: BeginSeqNo = first message of range, EndSeqNo = last message of range;

e To request all messages subsequent to a particular message: BeginSegNo = first message of range, EndSegNo = 0 (represents infinity).

N.B. Our service support Resend Request message but there is no resending for Quote and Quote Request messages.

Session status check
The Heartbeat monitors the status of the communication link and identifies cases when the last message of a string was not received.
During periods of message inactivity, FIX applications will generate Heartbeat messages at regular time intervals. The heartbeat monitors the
status of the communication link and identifies incoming sequence number gaps. The session initiator using the HeartBtInt field in the Logon
message declares the Heartbeat Interval. The heartbeat interval timer should be reset after every message is transmitted (not just heartbeats).
The HeartBtInt value should be agreed upon by the two firms and specified by the Logon initiator and echoed back by the Logon acceptor. Note
that the same HeartBtInt value is used by both sides, the Logon “initiator” and Logon “acceptor”.

When either end of a FIX connection has not sent any data for [HeartBtInt] seconds, it will transmit a Heartbeat message. When either
end of the connection has not received any data for (HeartBtInt + “some reasonable transmission time”) seconds, it will transmit a test request
message. If there is still no heartbeat message received after (HeartBtInt + “some reasonable transmission time”) seconds then the connection
should be considered lost and corrective action be initiated. If HeartBtInt is set to zero no regular heartbeat messages will be generated. Note
that a test request message can still be sent independent of the value of the HeartBtInt, which will force a Heartbeat message.

Heartbeats issued as the result of Test Request must contain the TestReqID transmitted in the Test Request message. This is useful to
verify that the Heartbeat is the result of the Test Request and not as the result of a regular timeout.

Reset sequence numbers
MOEX automatically resets sequence numbers (MsgSeqNum) at the start of each day. It means that sequence numbers of messages

should start from 1 each new day.

FIX client (initiator) may request to reset sequence number of messages (MsgSeqNum (34)) during a trading day. In this case, it is
recommended for the initiator to send a TestRequest and wait for a Heartbeat in response to ensure there are no sequence number gaps. Once
the Heartbeat has been received, the initiator should send a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. The acceptor
should respond with a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. At this point new messages from either side should
continue with MsgSegNum of 2. It should be noted that once the initiator sends the Logon with the ResetSeqNumFlag set, the acceptor must
obey this request and the message with the last sequence number transmitted “yesterday” may no longer be available.

In case FIX server cannot correctly resend missed messages via Sequence Reset — Gap Fill mode, for example after an unrecoverable
application failure, it may request to increase sequence number of messages via sending Sequence Reset (2) message with GapFillFlag (123) =
N (Sequence Reset) and NewSegNo (36) = <new sequence number>. Note that the use of Sequence Reset — Reset may result in the possibility

of losing messages.

Close (Terminate) session
In order to close FIX session FIX client should send Logout (5) message.

The logout message initiates or confirms the termination of a FIX session. Disconnection without the exchange of logout messages should be
interpreted as an abnormal condition. Before actually closing the session, the logout initiator should wait for the opposite side to respond with a
confirming logout message. This gives the remote end a chance to perform any Gap Fill operations that may be necessary. The session may be
terminated if the remote side does not respond in an appropriate timeframe.

After sending the Logout message, the logout initiator should not send any messages unless requested to do so by the logout acceptor via a
ResendRequest.

Reestablish session after failure

There are certain mechanisms of FIX session reestablishment:
1. In case connection was broken but FIX client didn't lose its logs the following steps should be taken in order to reestablish FIX session:

a. Send Logon (A) message with sequence number (MsgSeqNum (34)) = sequence number of the last message in out log + 1;

b. If FIX server confirms logon and sends Logon (A) message with sequence number greater than expected, then send Resend Request
(2) message with a range of missed messages;

¢. In this case FIX server resends all missed messages to FIX client.

2. In the case of serious failure when FIX client lost his logs the following steps should be taken in order to reestablish FIX session:
a. The first way:
i. Send Logon (A) message with sequence number (MsgSeqNum (34)) = 1 and ResetSeqNumFlag (141) ='Y";
ii. If FIX server confirms logon and sends Logon (A) message with MsgSeqNum (34)) = 1 and ResetSeqNumFlag (141) =Y,
then send Order Status Request (H) for each order in question.
b. The second way:
i. Send Logon (A) message with sequence number (MsgSeqNum (34)) = 1;
ii. If FIX server confirms logon and sends Logon (A) message with Text (58) ="MsgSegNum too low, expecting X but received Y”
send Logon (A) message with sequence number (MsgSegNum (34)) = X;
iii. Send Resend Request (2) message with a range of missed messages;
iv. In this case FIX server resends all missed messages to FIX client.

3. In order to get order status for particular order Order Status Request (H) message with ClrOrdID or OrderID fields should be sent.

Messages common for both role: Maker and Taker
Security List Request (x)

Message to request list of available security definitions.

<Group «Header»> Y Message type = 'x'
320 SecurityReqID Y | String Unique ID of the request message.
559 SecurityListRequestType = N* | Integer ‘0’ Identifies the type of Security List Request.

Security List (y)

Security List message is used to return a list of securities requested in Sequrity List Request(x) message.

<Group «Header»> Y Message type= 'X'

320 SecurityReqID Y | String Unique ID of the request message.

322 SecurityResponseID Y | String Identifier for Security List message.

560 SecurityRequestResult Y | Integer 0 — correct request Result of Security Request message.

146 NoRelatedSym N NumInGroup Specifies the number of repeating symbols (instruments) specified.

=> 336 TradingSessionID N | String Identifier for Trading Session which contains MOEX security board
(SECBOARD).

=> 55 Symbol N String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE

=> 460 | Product N | Char '4' Indicates the type of product the security is associated with.

https://www.onixs.biz/fix-dictionary/4.4/tagNum_320.html
https://www.onixs.biz/fix-dictionary/4.4/tagNum_559.html
https://www.onixs.biz/fix-dictionary/4.4/tagNum_320.html
https://www.onixs.biz/fix-dictionary/4.4/tagNum_322.html
https://www.onixs.biz/fix-dictionary/4.4/tagNum_560.html
https://www.onixs.biz/fix-dictionary/4.4/tagNum_146.html

=>561 RoundLot N Qty The trading lot size of a security.

Messages from Client to Server. Role: Maker
RFQ Request (AH)

RFQ request message issued by liquidity providers to subscribe to RFS auctions quote requests.

<Group «Header»> Y Message type = 'AH'

644 RFQReqID Y | String(20) RFQ Request ID - used to identify an RFQ Request message. Should be
unique during session.

146 NoRelatedSym Y | Integer 1 Specifies the number of repeating symbols (instruments) specified.

=>55 | Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE.
User able to send 55=* to subscribe all securities.

=> 336 TradingSessionID Y | String Identifier for Trading Session which contains MOEX security board
(SECBOARD).
User able to send 336=* to subscribe all available boards.

263 SubscriptionRequestTyp Y Char '1' - Subscribe; Request type.

e '2' - Unsubscribe;

QuoteRequestReject (AG)

The Quote Request Reject (AG) message is used to refuse participation in some RFS auction.

<Group «Header»>

131
658

146
=>55

QuoteReqID

QuoteRequestRejectReas
on

NoRelatedSym
Symbol

=> 336 TradingSessionID

Quote ('S")

String(20)

Integer

Integer
String(12)
String(4)

'99' - Other

Message type = 'AG'
Unique auction ID generated by the trading system.

Reject reason.

Specifies the number of repeating symbols (instruments) specified.
Ticker symbol. The MOEX internal instrument identifier, SECCODE

Identifier for Trading Session which contains MOEX security board
(SECBOARD).

The Quote (S) message is used by the liquidity providers as the response to a Quote Request (R) message.

Liquidity provider able to send quotes in both directions buy and sell in one message. Combination of 132\133 + 134\135 without 54 tag

should be

used in this case.

<Group «Header»>

131
117
54

55
460
336

«Parties»

QuoteReqID
QuoteID
Side

Symbol
Product

TradingSessionID

String(20)
String(20)
Char

String(12)
Char
String(4)

'1' — Buy;
2" — Sell;

Message type = 'S'
Unique auction ID generated by the trading system.
Unique (during auction) quote id.

Quote direction. User able to send bidirectional quotes with specific price and
quantity for each direction. In this case user shouldn’t send tag 54. Instead
tags 132\134 and 133\135 should be presented.

Ticker symbol. The MOEX internal instrument identifier, SECCODE

Indicates the type of product the security is associated with.

Identifier for Trading Session which contains MOEX security board
(SECBOARD).
Parties of the order. Contains client code.

1 Account Y* | String Trade account.

132 BidPx C Price Bid price.

133 OfferPx C Price Offer price.

134 BidSize C Qty Quantity of bid

135 OfferSize C Qty Quantity of offer

62 ValidUntilTime N UTCTimestamp Indicates expiration time of quote.

QuoteCancel ('Z")

Liquidity providers are able to use Quote Cancel (Z) message to withdraw their quotes.

<Group «Header»> Y Message type = 'Z'
131 QuoteReqID C String(20) Unique auction ID generated by the trading system. If tag not specified quote will be
canceled by the condition from 298 tag.
117 QuotelID Y* String(20) Arbitrary string (the maximum length is 20 characters). Tag is required under
the standard protocol FIX 4.4, but MOEX does not support it.
298 QuoteCancelType Y Char '1' - Cancel for If tag 131 not specified quote will be canceled by the condition from 298 tag.
Symbol If tag 131 presented, 298 tag still should be present as a mandatory under the protocol
'4" - Cancel All standard.
Quotes
It is possible to cancel quotes by symbol. In this case next tags 295, 55, 336 should be
presented.
295 NoQuoteEntries C NumInGroup The number of quote entries for a QuoteSet.
=>55 Symbol C String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
336 TradingSessionID C String Identifier for Trading Session which contains MOEX security board

(SECBOARD).

https://btobits.com/fixopaedia/fixdic44/data_types.html#UTCTimestamp

Usage examples:

Cancel quote by auction number:

Auction number 131=296. Tag 298 specified but ignored by the service.

8=FI1X.4.4; 9=91, 35=Z; 34=2; 49=MD9222100001; 56=MFIXRFSId; 52=20200114-07:56:31.000; 117=rand_str; 131=296; 298=1; 10=249;

Cancel quote by the symbol:

Tag 131 is absent. Tags 295, 55, 336 specified.

8=F1X.4.4; 9=120; 35=Z; 34=2; 49=MD9222100001; 56=MFIXRFSId; 52=20200114-07:58:20.000; 117=rand_str; 298=1; 295=1; 55=EUR_RUB__TOD;
336=RFSP; 460=4; 10=095;

Cancel all maker quotes in all auctions.

8=FI1X.4.4; 9=83; 35=Z; 34=2; 49=MD9222100001; 56=MFIXRFSId; 52=20200114-08:07:06.000; 117=rand_str; 298=4, 10=136;

Messages from Server to Client. Role: Maker

Quote Request ('R")

Server send Quote Request (R) message to liquidity provider after RFS auction initiation.

<Group «Header»> Y Message type = 'R'

115 OnBehalfOfCompID N | String(12) Liquidity consumer disclosure. Alias in case of anonymous auction, firm
code if not.

131 QuoteReqID Y | String(20) Unique auction ID generated by the trading system.

644 RFQReqID Y | String(20) Quote subscription ID.

21002 AuctionID Y | String(20) Unique auction ID generated by the trading system.

537 QuoteType N | Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumer initiate

3 — Counter auction in his\her own interest.
146 NoRelatedSym Y | Integer 1 Specifies the number of repeating symbols (instruments) specified.
=>55 Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
=> 336 TradingSessionID Y | String Identifier for Trading Session which contains MOEX security board
(SECBOARD).
=>460 | Product Y | Char '4' Indicates the type of product the security is associated with.
=> «Parties» N Parties of the order. Contains client code.
=>854 QtyType N | Integer '1'—1Inlots Type of quantity specified in a quantity field 38 (OrderQty). Always in lots
for MOEX.
=> 54 Side N | Char '1' (Buy) Quote direction. Absence of this quote considered as a bidirectional
2" (Sell) quote.
=> 38 OrderQty Y | Qty Quantity expressed in lots.
=>1 Account N | String(12) Trading account. Presented in only case when liquidity consumer also
subscribed to the auction as a liquidity provider.
=> 126 ExpireTime Y | UTCTimestamp Auction expiration time. Format YYYYMMDD-HH:MM:SS.

Quote Response ('AJ")

Server send Quote Response (AJ) message after the RFS auction ends.

<Group «Header»> Y Message type = 'AJ'
693 QuoteRespID Y String(20) Unique auction ID generated by the trading system.
117 QuotelD Y Best quote update number
21002 AuctionID Y String(20) Unique auction ID generated by the trading system.
537 QuoteType N Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumer initiate

3 — Counter auction in his\her own interest.

460 Product N Char Indicates the type of product the security is associated with.
854 QtyType N Integer '1'—1In lots Type of quantity specified in a quantity field 38 (OrderQty). Always in
lots for MOEX.
694 QuoteRespType Y Char '1' — Hit Identifies the type of Quote Response (AJ).
'3' — Expired
'6' — Pass
336 TradingSessionID Y String Identifier for Trading Session which contains MOEX security board
(SECBOARD).
55 Symbol Y String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
54 Side Y Char '1' — Buy; Quote direction.
2' — Sell;
38 OrderQty Y Qty Quantity expressed in lots.
1 Account N String(12) Trading account.
11 ClOrdId N String(20) Additional information entered by the trading firm

Execution Report ('8')

Execution report (8) message include data about matched RPS trade.

<Group «Header»> Y Message type = '8'

37 OrderID Y String(20) Unique quote ID generated by the system.

693 QuoteRespID Y String(20) Unique auction ID generated by the trading system.

526 SecondaryClOrdID N String(20) A reference field, which may be used as a back-feed by an external
system.

115 OnBehalfOfCompID N String(12) Liquidity consumer disclosure.

21002 AuctionID Y String(20) Unique auction ID generated by the trading system.

17 ExecID N String(20) Trade ID. Unique for MOEX.

<Group "Parties"> N

150 ExecType Y Char 'F' — Trade Type of Execution report (8) message.

39 OrdStatus Y Char '2' — Filled Order status.

1 Account Y String(12) Trading account

55
336

460
54

38
44
381
60
64

15
423

854
151

14

32
31

Symbol
TradingSessionID

Product
Side

OrderQty

Price
GrossTradeAmt
TransactTime
SettlDate

Currency
PriceType

QtyType
LeavesQty
CumQty

AvgPx

LastQty
LastPx

Quote ('S")

zZ<z=<=< <

=2 <2

Y*

Y*
Y*

String(12)
String(4)

Char
Char

Qty

Price

Amount
UTCTimestamp
LocalMktDate

Currency
Integer

Integer
Qty
Qty

Price

Qty

Price

'1' — Buy;
'2' — Sell;
2 — Per unit
'1'—In lots

Ticker symbol. The MOEX internal instrument identifier, SECCODE
Identifier for Trading Session which contains MOEX security board
(SECBOARD).

Indicates the type of product the security is associated with.

Quote direction.

Quantity expressed in lots.

Order price.

Trade volume expressed in rubbles

Trade registration time.

Specific date of trade settlement (SettlementDate) in YYYYMMDD
format

Currency code.

Code to represent the price type. Always 2 for MOEX.

Type of quantity specified in a quantity field. Always 1 for MOEX.

Quantity open for further execution (order balance). Always equal
zero.

Currently executed shares for chain of orders. Always equal to 38 tag

value.
Calculated average price of all fills on this order. Always equal to 44
tag value.

Trade Quantity. Always equal to 38 tag value.
Trade Price. Always equal to 44 tag value.

After the auction initiation, liquidity provider begins to receive Quote messages with best quotes. Some specific case is empty book quote.

Service send it when there is no any quote in the auction. Signs of the empty book quote are 132=0, 133=0, 134=0,135=0 tags.

<Group «Header»>

131
693

QuoteReqID
QuoteRespID

Y
Y
Y

String(20)
String(20)

Message type = 'S'
Unique auction ID generated by the trading system.
Unique auction ID generated by the trading system.

21002 AuctionID Y | String(20) Unique auction ID generated by the trading system.

117 QuotelD Y | String(20) Unique identifier for quote.

55 Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE

336 TradingSessionID = Y | String(4) Identifier for Trading Session which contains MOEX security board

(SECBOARD).

132 BidPx N Price Bid price.

133 OfferPx N Price Offer price.

134 BidSize Y | Qty Quantity of bid quote expressed in lots.

135 OfferSize Y Qty Quantity of offer quote expressed in lots.

537 QuoteType N Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumers initiate auction in
3 — Full amount his\her own interest.
quote

854 QtyType N | Integer '1'—1In lots Type of quantity specified in a quantity field. Always 1 for MOEX.

423 PriceType Y Integer 2 — Per unit Code to represent the price type. Always 2 for MOEX.

126 ExpireTime Y UTCTimestamp Auction expiration time

Quote Status Report ('Al')

Quote status report message (Al) is used to

response on liquidity provider Quote messages.
inform liquidity provider about quote status changes
as a report to Quote Cancel message if there were issued any problems

6 — Canceled by the
system

<Group «Header»> Y Message types = 'AT'
117 QuotelID Y | String(20) Unique identifier for quote.
131 QuoteReqgID Y | String(20) Unique auction ID generated by the trading system.
297 QuoteStatus Y | Integer 0 — Accepted Quote status.
5 — Canceled

7 — Expired

8 — Error

9 — Quote not found

10 — Pending

11 — Pass
55 Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
336 TradingSessionID Y | String(4) Identifier for Trading Session which contains MOEX security board

(SECBOARD).

58 Text N String TS transaction answer

Messages from Client to Server. Role: Taker
Quote Request ('R")

Liquidity consumer send Quote Request (R) message to initiate RFS auction.

<Group «Header»>

Message type = 'R

131 QuoteReqID String(20) Auction ID generated by liquidity consumer. Must be unique during
session.

537 QuoteType Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumers initiate

3 — Full amount quote auction in his\her own interest.

11 ClOrdId String(20) Additional information entered by the trading firm

526 SecondaryClOrdID String(20) A reference field, which may be used as a back-feed by an external
system.

146 NoRelatedSym Integer 1 Specifies the number of repeating symbols (instruments) specified.

=> 55 Symbol String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE

=> 336 TradingSessionID String Identifier for Trading Session which contains MOEX security board
(SECBOARD).

=> 460 Product Char Indicates the type of product the security is associated with.

=> «Parties»

Parties of the order. Contains client code.

=> 54 Side N | char '1' (Buy) Quote direction. Absence of this quote considered as a bidirectional
2" (Sell) quote.

=> 38 OrderQty Y | Qty Quantity in lots.

=>1 Account Y | String(12) Trade account.

=> 126 ExpireTime Y | UTCTimestamp Auction expiration time.

=> 6101 | Anonymity N | Char "Y' —Yes Indicates whether a Firm wants to remain anonymous during auction.. Mo
'N' — No. ymonuanmio 'Y'. Ecnv 'N' — npoBaiaep NMMKBUAHOCTU MOMYUYUT KOA (pUpMbl

norpebutens nukemaHoctn B Tare OnBehalfOfCompID(115).

Quote Response (‘AJ")

Liquidity consumer send Quote Response (AJ) message to finish auction. Message could be considered as a request to finish auction or as
a hit to match quote.

<Group «Header»> Y Message type = 'AJ'
693 QuoteRespID Y | String(20) Quote request message ID.
694 QuoteRespType Y | Char '1' = Hit Quote response message type.
'6' = Pass
336 TradingSessionID Y | String(4) Identifier for Trading Session which contains MOEX security board
(SECBOARD).
55 Symbol Y String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
54 Side C | char '1' (Buy) Quote direction.
2" (Sell)
38 OrderQty C Qty Quantity expressed in lots.
460 Product Y | Char Indicates the type of product the security is associated with.
44 Price C Price Quote price.
1 Account C | String(12) Trading account.

11 ' Clordid N String(20) | " Quote number from the quote message presented by liquidity provider.

Messages from Server to Client. Role:Taker
Quote ('S")

After the auction initiation, liquidity consumer begins to receive Quote messages with best quotes from liquidity providers. Some specific
case is empty book quote. Service send it when there is no any quote in the auction. Signs of the empty book quote are 132=0, 133=0,
134=0,135=0 tags.

<Group «Header»> Y Message type = 'S'

131 QuoteReqID Y | String(20) Auction ID from the Quote request message.

693 QuoteRespID Y String(20) Auction ID from the Quote request message.

21002 AuctionID Y | String(20) Unique auction ID generated by the trading system.

117 QuoteID Y String(20) Best quote update number

<Group "Parties"> N

1 Account Y | String(12) Trading account

55 Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE

336 TradingSessionID = Y | String(4) Identifier for Trading Session which contains MOEX security board
(SECBOARD).

460 Product Y | Char '4' Indicates the type of product the security is associated with.

132 BidPx N Price Bid price.

133 OfferPx N Price Offer price.

134 BidSize Y Qty Quantity of bid quote expressed in lots.

135 OfferSize Y | Qty Quantity of offer quote expressed in lots.

38 OrderQty Y | Qty Quantity expressed in lots.

537 QuoteType N | Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumers initiate auction in his\her own
3 — Full amount | interest.
quote

854 QtyType Y | Integer '1'—1In lots Type of quantity specified in a quantity field. Always 1 for MOEX.

423 PriceType Y | Integer 2 — Per unit Code to represent the price type. Always 2 for MOEX.

126 ExpireTime Y UTCTimestamp Auction expiration time

Quote Request Reject (‘AG')
If there were any problems with auction initiation, liquidity consumer get Quote Request Reject (AG) message.

<Group «Header»> Y Message type = 'AG'

58 Text N String Error text.

131 QuoteReqID Y | String(20) Auction ID from the Quote request message.

658 QuoteRequestRejectReas Y | Integer '10' Rejection reason.

on

146 NoRelatedSym Y | Integer 1 Specifies the number of repeating symbols (instruments) specified.

=>55 | Symbol Y | String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE

=> 336 TradingSessionID Y | String(4) Identifier for Trading Session which contains MOEX security board
(SECBOARD).

58 Text Y | String Reject reason.

Quote Response (‘Al")

uote Response (AJ) message is used to report liquidity consumer about the end of auction.

<Group «Header»> Y Message type = 'AJ'

693 \ QuoteRespID Y | String(20) Quote response message ID.

117 QuotelID Y Best quote update number

21002 AuctionID Y | String(20) Unique auction ID generated by the trading system.
694 QuoteRespType Y | Char '1' = Hit Identifies the type of Quote Response.
'3' — Expired
'6' - Pass
336 TradingSessionID Y | String(4) Identifier for Trading Session which contains MOEX security board
(SECBOARD).
55 Symbol Y String(12) Ticker symbol. The MOEX internal instrument identifier, SECCODE
460 Product N | Char Indicates the type of product the security is associated with.
537 QuoteType N Integer 1 — Quote 537=3 is a confirmation of statement that liquidity consumers initiate
3 — Full amount quote auction in his\her own interest.
854 QtyType Y | Integer '1'—1Inlots Type of quantity specified in a quantity field. Always 1 for MOEX.
54 Side Y | Char '1' — Buy; Quote direction.
2" — Sell;
38 OrderQty Y | Qty Quantity expressed in lots.
1 Account N String(12) Trading account.
11 ClOrdId N String(20) Additional information entered by the trading firm

Execution Report ('8")
Execution report (8) message include data about RPS trade.

<Group «Header»> Y Message type = '8'
37 OrderID Y | String(20) Unique quote ID generated by the system.
693 QuoteRespID Y | String(20) Quote response message ID.
526 SecondaryClOrdID N String(20) A reference field, which may be used as a back-feed by an external
system.
854 QtyType Y | Integer '1'—1In lots Type of quantity specified in a quantity field. Always 1 for MOEX.
21002 AuctionID Y | String(20) Unique auction ID generated by the trading system.

17 ExecID Y | String(20) Trade ID. Unigue for MOEX.

<Group "Parties">

150

39

1
55
460

336

54

38

44
381
60
64

151
14

32
31
15
423

103
58

ExecType
OrdStatus

Account
Symbol
Product

TradingSessionID
Side

OrderQty

Price
GrossTradeAmt
TransactTime
SettlDate

LeavesQty
CumQty

AvgPx

LastQty
LastPx

Currency
PriceType

OrdRejReason
Text

QuoteStatusReport (‘Al')
Quote status report message (Al) is used to inform liquidity consumer about negative reaction to the Quote Request Reject message.

=2

< <<z <

=<

222< <

N*

N*

N*
N*

=22 <

Char
Char

String(12)
String(12)
Char

String(4)

Char

Qty

Price

Amount
UTCTimestamp
LocalMktDate

Qty
Qty

Price

Qty

Price
Currency
Integer

Integer
String

'F' — Trade
'8' — Reject
'2' — Filled

'8' - Rejected
'1' — Buy;

2' — Sell;

2 — Per unit
99 — Other

Type of Execution report (8) message.
Order status.

Trading account
Ticker symbol. The MOEX internal instrument identifier, SECCODE
Indicates the type of product the security is associated with.

Identifier for Trading Session which contains MOEX security board
(SECBOARD).
Quote direction.

Quantity expressed in lots.

Order price.

Trade volume expressed in rubbles

Trade registration time.

Specific date of trade settlement (SettlementDate) in YYYYMMDD
format

Quantity open for further execution (order balance). Always equal zero.
Currently executed shares for chain of orders. Always equal to 38 tag
value.

Calculated average price of all fills on this order. Always equal to 44 tag
value.

Trade Quantity. Always equal to 38 tag value.

Trade Price. Always equal to 44 tag value.

Currency code.

Code to represent the price type. Always 2 for MOEX.

Reject reason.
TS transaction answer

<I'pynna «Header»>

Tum coobmenuns = ‘Al

(0]
117 QuotelD O | String(20) NoeHTndunkaTop KOTUPOBKM NpoBaiiaepa JIMKBUAHOCTY.
131 QuoteReqID O String(20) NaoeHTudmkaTop aykumoHa.
297 QuoteStatus O | Integer 9 — ayKUMOH He HaiaeH CraTyc ayKumoHa.
55 Symbol String(12) Koa nHcTpymeHTa.
336 TradingSessionID String(4) Ko pexwvMa Topros.
58 Text String Tekct otBeTa TC

